[00287787]一种基于深度时空特征的高精度面部表情识别方法
交易价格:
面议
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN201710463130.2
交易方式:
完全转让
许可转让
技术入股
联系人:
南京邮电大学
所在地:江苏南京市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
本发明公开了一种基于深度时空特征的高精度面部表情识别方法,该方法首先是设计了一种端到端可训练的多通道深度神经网络模型,该模型在低层利用多个并联的深度神经网络分别提取人脸表情图像的深度时空特征,然后在高层使用全连接层对多通道深度时空特征数据进行融合,最高层采用softmax层进行识别得到表情分类。该模型将图像特征提取和特征融合整合为一个可以进行全局训练的网络,加深了网络规模,提高了识别性能。第二个创新点是本发明使用平均脸来替代中性脸,这种做法解决了测试时表情图像缺少对应的中性脸图像的问题,使得本发明可以满足实际场合的应用。本发明在表情识别领域提供了一种新的思路,具有很高的实用价值和发展前景。