[00287621]一种基于数据追踪的推荐系统安全检测方法
交易价格:
面议
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN201610120727.2
交易方式:
完全转让
许可转让
技术入股
联系人:
南京邮电大学
所在地:江苏南京市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
本发明提出一种基于数据追踪的推荐系统安全检测方法,以解决传统的协同过滤推荐系统检测用户注入概貌的耗时长、攻击效果不佳、不能适应大数据处理等缺点。该发明首先使用扩展卡尔曼滤波EKF可应用于时间非线性动态系统的特点,追踪并预测项目的评分状况,之后再利用线性判别分析LDA对项目中的评分异常用户进行聚类分析,从而判定该项目中的攻击用户及其概貌。扩展卡尔曼滤波方法的采用减少了对大量无关数据的检测,从而提高了检测效率,提高了系统的健壮性。追踪算法用于推荐系统的安全检测,能够实现在线不间断的系统检测,降低了误检率。线性判别分析方法实现对多特征用户降维,从而有效地检测恶意用户的概貌注入攻击并增加了检测率。