[00286633]一种基于深度学习算法的癫痫发作预警系统及方法
交易价格:
面议
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN201710192272.X
交易方式:
完全转让
许可转让
技术入股
联系人:
南京医科大学
所在地:江苏南京市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
摘要:本发明涉及一种基于深度学习算法的癫痫发作预警系统及方法,其通过佩戴脑电采集装置采集患者癫痫发作前5分钟和发作时的持续脑电信号,分割成每段10秒的脑电信号,利用小波变换方法对脑电信号进行滤波并提取其节律信息;将获取的节律信息分别送入深度学习框架一和二进行训练,分别得到训练完的深度学习模型一和二,并存储于服务器中;利用深度学习模型一进行脑电节律信息的判别,存在发作风险时,服务器向患者发出警报,并将预警及定位发送给预设置的联系人及医院;深度学习模型二通过患者评价此次预警准确性及根据深度学习模型二判别癫痫是否发作,若发作,则自动将癫痫发作前5分钟持续脑电节律信息送到深度学习框架一进行再训练。